Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.005
Filtrar
1.
Viruses ; 16(3)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38543791

RESUMO

(1) Recombinant protein production in mammalian cells is either based on transient transfection processes, often inefficient and underlying high batch-to-batch variability, or on laborious generation of stable cell lines. Alternatively, BacMam, a transduction process using the baculovirus, can be employed. (2) Six transfecting agents were compared to baculovirus transduction in terms of transient and stable protein expression characteristics of the model protein ACE2-eGFP using HEK293-6E, CHO-K1, and Vero cell lines. Furthermore, process optimization such as expression enhancement using sodium butyrate and TSA or baculovirus purification was assessed. (3) Baculovirus transduction efficiency was superior to all transfection agents for all cell lines. Transduced protein expression was moderate, but an 18-fold expression increase was achieved using the enhancer sodium butyrate. Ultracentrifugation of baculovirus from a 3.5 L bioreactor significantly improved the transduction efficiency and protein expression. Stable cell lines were obtained with each baculovirus transduction, yet stable cell line generation after transfection was highly unreliable. (4) This study demonstrated the superiority of the BacMam platform to standard transfections. The baculovirus efficiently transduced an array of cell lines both transiently and stably and achieved the highest efficiency for all tested cell lines. The feasibility of the scale-up of baculovirus production was demonstrated and the possibility of baculovirus purification was successfully explored.


Assuntos
Baculoviridae , Vetores Genéticos , Animais , Humanos , Ácido Butírico , Células HEK293 , Vetores Genéticos/genética , Baculoviridae/genética , Baculoviridae/metabolismo , Plasmídeos/genética , Mamíferos
2.
Open Biol ; 14(2): 230278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38378139

RESUMO

Neuroparasitism concerns the hostile take-over of a host's nervous system by a foreign invader, in order to alter the behaviour of the host in favour of the parasite. One of the most remarkable cases of parasite-induced host behavioural manipulation comprises the changes baculoviruses induce in their caterpillar hosts. Baculoviruses may manipulate caterpillar behaviour in two ways: hyperactivity (increased movement in the horizontal plane) and/or tree-top disease (movement to elevated levels in the vertical plane). Those behavioural changes are followed by liquefaction and death of the caterpillar. In Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected Spodoptera exigua caterpillars, an enzymatic active form of the virally encoded protein tyrosine phosphatase (PTP) is needed for the expression of hyperactivity from 3 days post infection (dpi). Using eGFP-expressing recombinant AcMNPV strains, we show that infection of the caterpillar's central nervous system (CNS) can be observed primarily from 3 dpi onwards. In addition, we demonstrate that the structural and enzymatic function of PTP does not play a role in infection of the CNS. Instead we show that the virus entered the CNS via the trachea, progressing caudally to frontally through the CNS and that the infection progressed from the outermost cell layers towards the inner cell layers of the CNS, in a PTP independent manner. These findings help to further understand parasitic manipulation and the mechanisms by which neuroparasites infect the host nervous system to manipulate host behaviour.


Assuntos
Baculoviridae , Sistema Nervoso Central , Nucleopoliedrovírus , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Spodoptera/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
3.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 473-484, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38369834

RESUMO

Adeno-associated virus (AAV) is one of the most frequently used viral vectors in the field of gene therapy. However, the industrial production of AAV is facing key bottlenecks such as low yield and high-cost. The aim of this study was to establish a technology system for production of AAV in the double virus infected insects by using multiple-gene deleted baculovirus. First, a multiple gene deleted baculovirus for AAV production was constructed, and the baculovirus titer and its effect on infected cells was examined. Subsequently, the insect cells were co-infected with the double baculovirus and the infection conditions were optimized. At the final stage, we performed AAV production based on optimized conditions, and evaluated relevant parameters including production titer and quality. The results showed that the titer of AAV produced in the multiple gene deleted baculovirus was not different from that of the wild type, but the rate of cell death was significantly slower upon infection. Using the double virus route for optimized production of AAV, the genome titers were 1.63×1011 VG/mL for Bac4.0-1 and 1.02×1011 VG/mL for Bac5.0-2, which were elevated 240% and 110%, respectively, compared with that of the wild-type. Electron microscopy observations revealed that all three groups exhibited normal AAV viral morphology and they showed similar transduction activity. Taken together, we developed an AAV production system based on the infection of insect cells using multiple-gene deleted baculovirus, which significantly improved the virus yield and showed application potential.


Assuntos
Baculoviridae , Dependovirus , Animais , Dependovirus/genética , Dependovirus/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Linhagem Celular , Vetores Genéticos , Insetos/genética
4.
Methods Mol Biol ; 2762: 43-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315359

RESUMO

The baculovirus/insect cell expression system is a very useful tool for reagent and antigen generation in vaccinology, virology, and immunology. It allows for the production of recombinant glycoproteins, which are used as antigens in vaccination studies and as reagents in immunological assays. Here, we describe the process of recombinant glycoprotein production using the baculovirus/insect cell expression system.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Proteínas Recombinantes , Insetos/metabolismo
5.
N Biotechnol ; 80: 46-55, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38302001

RESUMO

The aim of this study was the development of a scalable production process for high titer (108 pfu/mL and above) recombinant baculovirus stocks with low cell line-derived impurities for the production of virus-like particles (VLP). To achieve this, we developed a high cell density (HCD) culture for low footprint cell proliferation, compared different infection strategies at multiplicity of infection (MOI) 0.05 and 0.005, different infection strategies and validated generally applicable harvest criteria of cell viability ≤ 80%. We also investigated online measurable parameters to observe the baculovirus production. The infection strategy employing a very low virus inoculum of MOI 0.005 and a 1:2 dilution with fresh medium one day after infection proved to be the most resource efficient. There, we achieved higher cell-specific titers and lower host cell protein concentrations at harvest than other tested infection strategies with the same MOI, while saving half of the virus stock for infecting the culture compared to other tested infection strategies. HCD culture by daily medium exchange was confirmed as suitable for seed train propagation, infection, and baculovirus production, equally efficient as the conventionally propagated seed train. Online measurable parameters for cell concentration and average cell diameter were found to be effective in monitoring the production process. The study concluded that a more efficient VLP production process in large scale can be achieved using this virus stock production strategy, which could also be extended to produce other proteins or extracellular vesicles with the baculovirus expression system.


Assuntos
Baculoviridae , Baculoviridae/metabolismo , Linhagem Celular , Proliferação de Células , Contagem de Células
6.
Nat Commun ; 15(1): 250, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177118

RESUMO

Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We use electron cryomicroscopy to determine a 3.2 Å helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a distinct protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism shows that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.


Assuntos
Baculoviridae , Nucleocapsídeo , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Spodoptera , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo
7.
Protein Expr Purif ; 215: 106406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995943

RESUMO

The baculovirus expression system is a powerful and widely used method to generate large quantities of recombinant protein. However, challenges exist in workflows utilizing either liquid baculovirus stocks or the Titerless Infected-Cells Preservation and Scale-Up (TIPS) method, including the time and effort to generate baculoviruses, screen for protein expression and store large numbers of baculovirus stocks. To mitigate these challenges, we have developed a streamlined, hybrid workflow which utilizes high titer liquid virus stocks for rapid plate-based protein expression screening, followed by a TIPS-based scale-up for larger protein production efforts. Additionally, we have automated each step in this screening workflow using a custom robotic system. With these process improvements, we have significantly reduced the time, effort and resources required to manage large baculovirus generation and expression screening campaigns.


Assuntos
Baculoviridae , Triagem , Fluxo de Trabalho , Baculoviridae/genética , Baculoviridae/metabolismo , Proteínas Recombinantes , Vetores Genéticos
8.
Nat Commun ; 14(1): 7481, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980340

RESUMO

Baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been widely used as a bioinsecticide and a protein expression vector. Despite their importance, very little is known about the structure of most baculovirus proteins. Here, we show a 3.2 Å resolution structure of helical cylindrical body of the AcMNPV nucleocapsid, composed of VP39, as well as 4.3 Å resolution structures of both the head and the base of the nucleocapsid composed of over 100 protein subunits. AcMNPV VP39 demonstrates some features of the HK97-like fold and utilizes disulfide-bonds and a set of interactions at its C-termini to mediate nucleocapsid assembly and stability. At both ends of the nucleocapsid, the VP39 cylinder is constricted by an outer shell ring composed of proteins AC104, AC142 and AC109. AC101(BV/ODV-C42) and AC144(ODV-EC27) form a C14 symmetric inner layer at both capsid head and base. In the base, these proteins interact with a 7-fold symmetric capsid plug, while a portal-like structure is seen in the central portion of head. Additionally, we propose an application of AlphaFold2 for model building in intermediate resolution density.


Assuntos
Baculoviridae , Nucleocapsídeo , Animais , Baculoviridae/metabolismo , Microscopia Crioeletrônica , Spodoptera , Nucleocapsídeo/metabolismo , Proteínas do Capsídeo/metabolismo
9.
Int J Biol Markers ; 38(3-4): 174-184, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37312528

RESUMO

BACKGROUND: Many types of cancer exhibit high nuclear factor erythroid 2-related factor 2 (NRF2), which is effective in resisting drugs and radiation. However, the role of NRF2 gene expression in predicting the prognosis of esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS: The association between NRF2, heme oxygenase-1 (HO-1), baculovirus IAP repeat 5 (BIRC5), P53 gene expression levels and their relationship to immune-infiltrating cells were assessed using the Cancer Genome Atlas dataset, the Human Protein Atlas and the TISDB database. The expression of NRF2, HO-1, BIRC5, and TP53 in 118 ESCC patients was detected by immunohistochemistry, and the relationship between their expression level and clinicopathological parameters and prognosis was analyzed. RESULTS: In ESCC, NRF2 overexpression was significantly associated with Han ethnicity, lymph node metastasis, and distant metastasis. HO-1 overexpression was significantly associated with differentiation, advanced clinical staging, lymph node metastasis, nerve invasion, and distant metastasis. BIRC5 overexpression was significantly associated with Han ethnicity and lymph node metastasis. TP53 overexpression was significantly associated with Han ethnicity and T staging. The NRF2/HO-1 axis expression was positively correlated with BIRC5 and TP53. Kaplan-Meier and multivariate Cox regression analysis showed that NRF2, BIRC5, and TP53 genes co-expression was an independent prognostic risk factor. TISIDB dataset analysis showed that immune-infiltrating cells were significantly negatively correlated with NRF2 and BIRC5. CONCLUSION: NRF2, BIRC5, and TP53 axis gene expressions are predictors of poor prognosis for ESCC. The overexpression of the NRF2/HO-1/BIRC5 axis may not be related to immune-infiltrating cells.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Esofágicas/patologia , Metástase Linfática , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Baculoviridae/metabolismo , Prognóstico , Biomarcadores Tumorais/metabolismo , Proteína Supressora de Tumor p53/genética , Survivina/genética , Survivina/metabolismo
10.
Methods Mol Biol ; 2691: 199-206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355547

RESUMO

Inflammasomes are innate immune sensing and signaling complexes critical for defense against pathogens and response to cellular stresses. A core component of inflammasomes is the sensor protein, which, upon sensing pathogen- or danger-associated molecular patterns (PAMPs or DAMPs), converts from inactive to active signaling platform for initiation of inflammatory signaling. A reliable source for the production and purification of recombinant inflammasome sensors is therefore invaluable for biochemical and structural characterizations, as well as drug screening for the development of therapeutics. Here, we describe an expression and purification protocol using the baculovirus-insect cell expression system to generate recombinant NLRP1, an important member of the NOD-like receptor (NLR) family of inflammasome sensors.


Assuntos
Inflamassomos , Proteínas NLR , Inflamassomos/metabolismo , Proteínas NLR/genética , Transdução de Sinais , Baculoviridae/genética , Baculoviridae/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR
11.
Biotechnol Bioeng ; 120(9): 2588-2600, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36919374

RESUMO

The insect cell-baculovirus expression vector system (IC-BEVS) has shown to be a powerful platform to produce complex biopharmaceutical products, such as recombinant proteins and virus-like particles. More recently, IC-BEVS has also been used as an alternative to produce recombinant adeno-associated virus (rAAV). However, little is known about the variability of insect cell populations and the potential effect of heterogeneity (e.g., stochastic infection process and differences in infection kinetics) on product titer and/or quality. In this study, transcriptomics analysis of Sf9 insect cells during the production of rAAV of serotype 2 (rAAV2) using a low multiplicity of infection, dual-baculovirus system was performed via single-cell RNA-sequencing (scRNA-seq). Before infection, the principal source of variability in Sf9 insect cells was associated with the cell cycle. Over the course of infection, an increase in transcriptional heterogeneity was detected, which was linked to the expression of baculovirus genes as well as to differences in rAAV transgenes (rep, cap and gfp) expression. Noteworthy, at 24 h post-infection, only 29.4% of cells enclosed all three necessary rAAV transgenes to produce packed rAAV2 particles, indicating limitations of the dual-baculovirus system. In addition, the trajectory analysis herein performed highlighted that biological processes such as protein folding, metabolic processes, translation, and stress response have been significantly altered upon infection. Overall, this work reports the first application of scRNA-seq to the IC-BEVS and highlights significant variations in individual cells within the population, providing insight into the rational cell and process engineering toward improved rAAV2 production in IC-BEVS.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Transcriptoma/genética , Análise da Expressão Gênica de Célula Única , Células Sf9 , Baculoviridae/genética , Baculoviridae/metabolismo , Insetos
12.
J Fish Dis ; 46(2): 165-176, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36423261

RESUMO

The infectious spleen and kidney necrosis virus (ISKNV) is a highly lethal virus, which has brought significant losses to aquaculture. Therefore, a new vaccine against ISKNV with high efficiency, safety and convenience must be developed. While baculoviruses are more commonly used as protein expression systems for vaccine antigen production, this paper used baculovirus technology to develop a live-vector vaccine, BacMCP, which contains the coding sequence of the major capsid protein (MCP) (GenBank accession no. AF371960) of ISKNV and is driven by a CMV promoter. Real-time PCR and immunofluorescence showed that the MCP gene was successfully delivered to and expressed in fish cells and tissues inoculated with BacMCP. Immune-related gene (IgM, TGF-ß, IL-1, IL-8, TNF-α) expression was induced in BacMCP-treated groups of largemouth bass compared with control groups. Specific antibodies could be detected in the serum of BacMCP injection-vaccinated largemouth bass by ELISA. After injection or immersion vaccination with BacMCP for 21 days, largemouth bass were infected with ISKNV. The immune effect of the injected immunization on fish in different sizes was evaluated. The vaccine efficacy of injection-vaccinated bass was 100% in small bass and 85.7% in large bass. The vaccine efficacy of immersion-vaccinated small bass was 77.3%. This study suggested that BacMCP can be used as a vector-based vaccine candidate to prevent the diseases caused by ISKNV infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Vacinas Virais , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Vacinas Sintéticas , Proteínas do Capsídeo/genética , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/veterinária
13.
Mol Biotechnol ; 65(6): 970-982, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36396754

RESUMO

This work aimed to describe the dynamics of the Sf9 insect cells death and primary metabolism when this host is infected simultaneously by two recombinant baculoviruses (BV) expressing rabies glycoprotein (BVG) and matrix protein (BVM) genes to produce rabies virus-like particles (VLP) at different multiplicities of infection (MOI). Schott flasks essays covering a wide range of MOI for both BV were performed. Viable cell density, cell viability, glucose, glutamine, glutamate, lactate, ammonium, and rabies proteins concentrations were monitored over the infection phase. The expression of both recombinant proteins was not limited by glucose, glutamine, and glutamate in a broad MOI (pfu/cell) range of BVG (0.15-12.5) and BVM (0.1-5.0) using SF900 III serum free culture medium. Death phase initiation and the specific death rate depend on BV MOI. The wave pattern of nutrient/metabolite profiles throughout the viral infection phase is related to the baculovirus lytic cycle. The optimal MOIs ratio between BVG (2.5-4.5) and BVM (1.0-3.0) for maximum protein expression was defined. The produced rabies VLP sizes are close to 78 nm. In general, these work outputs bring a better understanding of the metabolic performance of Sf9 cells when infected by BV for producing VLP, and specifically, for progressing in a rabies VLP vaccine development.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Humanos , Baculoviridae/genética , Baculoviridae/metabolismo , Células Sf9 , Linhagem Celular , Vírus da Raiva/genética , Glutamina/metabolismo , Glutamatos/metabolismo , Glucose/metabolismo
14.
Immunology ; 169(1): 27-41, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36371679

RESUMO

Although the baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infects lepidopteran invertebrates as natural hosts, represents an efficient vector for vaccine development. Baculovirus surface display induces strong humoral responses against viruses and parasites. A novel strategy based on capsid display carrying foreign antigens in the AcMNPV particle further improved the immune response by eliciting CD8+ T cell activation. In this study, we analyze the intracellular mechanisms and signalling pathways involved in CD8+ T cell activation by capsid display. Our results show that baculovirus can attach to the cell surface, enter dendritic cells (DCs), transit within endocytic vesicles and escape to the cytosol for further degradation by the proteasome. We found that the availability of viral proteins, endosomal acidification, and proteasome activity are needed for efficient Major Histocompatibility Complex class-I presentation by baculovirus carrying Ovalbumin in the viral capsid. Importantly, we demonstrated with this strategy that the induction of cytotoxic T cells and IL-12 production by DCs are TLR9-dependent and STING-independent. Finally, our study shows differential intracellular processing for capsid and surface baculovirus proteins in DCs and highlights the role of different danger receptors during cytotoxic T cell priming through the capsid display delivery system, which could lead to improved baculovirus-based vaccines development.


Assuntos
Antineoplásicos , Baculoviridae , Baculoviridae/genética , Baculoviridae/metabolismo , Capsídeo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas do Capsídeo/genética
15.
Viruses ; 14(12)2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36560674

RESUMO

The baculovirus expression vector system (BEVS) is a widely used platform for recombinant protein production for use in a wide variety of applications. Of particular interest is production of virus-like particles (VLPs), which consist of multiple viral proteins that self-assemble in strict stoichiometric ratios to mimic the structure of a virus but lacks its genetic material, while a significant amount of effort has been spent on optimizing expression ratios by co-infecting cells with multiple recombinant BEVs and modulating different process parameters, co-expressing multiple foreign genes from a single rBEV may offer more promise. However, there is currently a lack of promoters available with which to optimize co-expression of each foreign gene. To address this, previously published transcriptome data was used to identify promoters that have incrementally lower expression profiles and compared by expressing model cytoplasmic and secreted proteins. Bioinformatics was also used to identify sequence determinants that may be important for late gene transcription regulation, and translation initiation. The identified promoters and bioinformatics analyses may be useful for optimizing expression of foreign genes in the BEVS.


Assuntos
Baculoviridae , Regulação da Expressão Gênica , Baculoviridae/genética , Baculoviridae/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Expressão Gênica , Vetores Genéticos/genética
16.
J Biosci Bioeng ; 134(5): 432-440, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36163133

RESUMO

The production of recombinant proteins using insect cells has been widely used for over 30 years, which contributing to life science research and biotechnology. Insect cells exhibiting enhanced N-glycosylation and recombinant protein productivity enhance the productivity of the baculovirus-insect cell system (BICS). A new highly proliferative insect cell strain, 2g2, was established from the Mamestra brassicae pupa ovary cell strain NIAS-MB-32 (RCB0413) to address the problem of Sf-rhabdovirus and to explore the newly available possibilities in BICS as well as Sf9, such as increased protein production and recombinant baculovirus amplification. The high-growth cell strain 2g2 was examined for its recombinant protein production ability and baculovirus productivity; moreover, the activity of the produced recombinant proteins was examined using Sf9 as a benchmark. Recombinant protein productivity and virus production by BICS in 2g2 was confirmed as equivalent to that of Sf9. Furthermore, we produced the severe acute respiratory syndrome coronavirus 2 spike protein in a baculovirus-free system and compared its productivity, binding activity with human angiotensin-converting enzyme 2, and N-glycosylation. The productivity and bioactivity were found to be equal to or better than that of Sf9. Moreover, N-glycosylation analysis revealed that the glycans derived from the 2g2-produced glycoproteins were mostly of the high mannose type as Sf9. Therefore, 2g2 may have the same N-glycosylation ability as Sf9. Finally, the Sf-rhabdovirus was confirmed to be negative in 2g2. Our results demonstrated that the novel insect cell strain 2g2 can serve as a protein production tool in scientific research and industrial biotechnology.


Assuntos
Baculoviridae , COVID-19 , Animais , Humanos , Baculoviridae/genética , Baculoviridae/metabolismo , Proteínas Recombinantes/metabolismo , Insetos , Spodoptera/metabolismo
17.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897712

RESUMO

Single-chain variable fragments (scFv) are antigen-recognizing variable fragments of antibodies (FV) where both subunits (VL and VH) are connected via an artificial linker. One particular scFv, iKM33, directed against blood coagulation factor VIII (FVIII) was shown to inhibit major FVIII functions and is useful in FVIII research. We aimed to investigate the properties of iKM33 enabled with protease-dependent disintegration. Three variants of iKM33 bearing thrombin cleavage sites within the linker were expressed using a baculovirus system and purified by two-step chromatography. All proteins retained strong binding to FVIII by surface plasmon resonance, and upon thrombin cleavage, dissociated into VL and VH as shown by size-exclusion chromatography. However, in FVIII activity and low-density lipoprotein receptor-related protein 1 binding assays, the thrombin-cleaved iKM33 variants were still inhibitory. In a pull-down assay using an FVIII-affinity sorbent, the isolated VH, a mixture of VL and VH, and intact iKM33 were carried over via FVIII analyzed by electrophoresis. We concluded that the isolated VL and VH assembled into scFv-like heterodimer on FVIII, and the isolated VH alone also bound FVIII. We discuss the potential use of both protease-cleavable scFvs and isolated Fv subunits retaining high affinity to the antigens in various practical applications such as therapeutics, diagnostics, and research.


Assuntos
Fator VIII , Anticorpos de Cadeia Única , Antígenos , Baculoviridae/metabolismo , Fator VIII/genética , Fator VIII/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Trombina
18.
Methods Mol Biol ; 2524: 75-89, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821464

RESUMO

Secreted copepod luciferases (CopLucs) represent highly homologous enzymes which catalyze the oxidation of a low molecular weight substrate, coelenterazine, with the emission of blue light (λmax = 485-488 nm), that is called bioluminescence (BL). The well-studied Gaussia (GLuc) and Metridia (MLuc) luciferases originally cloned from the marine copepods Gaussia princeps and Metridia longa belong to the group of the smallest natural luciferases. Their minimal molecular weight, high luminescent activity, cofactor-independent BL, and the ability to be secreted due to the own signal peptide open up the horizons for genetic engineering of CopLuc-based sensitive biosensors for in vivo imaging and in vitro analytical applications. The "standard" soluble bacterial expression of the recombinant CopLucs and luciferase-based hybrid proteins is hampered by the presence of high amounts of intramolecular disulfide bonds (up to 5 per molecule). Here, we describe the universal protocol for highly effective secreted expression of disulfide-rich CopLucs using their own signal peptide in insect cells and their purification from serum-free culture medium. The suggested protocol allows obtaining high-purity CopLucs folded in their native form with the yield of up to 5 mg per liter.


Assuntos
Copépodes , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Copépodes/genética , Dissulfetos/química , Luciferases/metabolismo , Sinais Direcionadores de Proteínas
19.
Methods Mol Biol ; 2507: 223-240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35773585

RESUMO

Membrane proteins are an essential part of the machinery of life. They connect the interior and exterior of cells, play an important role in cell signaling and are responsible for the influx and efflux of nutrients and metabolites. For their structural and functional analysis high yields of correctly folded and modified protein are needed. Insect cells, such as Sf9 cells, have been one of the major expression hosts for eukaryotic membrane proteins in structural investigations during the last decade, as they are easier to handle than mammalian cells and provide more natural posttranslational modifications than microbial systems. Here we describe general techniques for establishing and maintaining insect cell cultures, the generation and amplification of recombinant baculovirus stocks using the flashBAC™ or Bac-to-Bac™ systems, membrane protein production, as well as the production of membrane preparations for extraction and purification experiments.


Assuntos
Baculoviridae , Proteínas de Membrana , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Vetores Genéticos , Insetos/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera/metabolismo
20.
Methods Mol Biol ; 2507: 295-312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35773588

RESUMO

G protein-coupled receptors (GPCRs) are involved in a variety of human physiological processes and are attractive targets for treating various diseases. Yet, despite the importance as therapeutic targets, only 97 unique GPCR structures have been determined to date. A key challenge in their structural biology study is to obtain adequate protein samples because GPCRs usually have the low expression in native tissues. The in vitro recombinant expression provides the possibility to obtain large quantities of high-quality proteins suitable for three-dimensional structure determination by crystallography or single particle cryo-EM methods. For GPCR protein production, eukaryotic expression systems, such as baculovirus system and mammalian system, are the most widely used. In this chapter, we provide an overview of the methodological approaches on GPCRs expression and purification optimization using insect cells and mammalian cells, which is the prerequisite conditions for structural biology studies.


Assuntos
Baculoviridae , Receptores Acoplados a Proteínas G , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Cristalografia , Eucariotos/metabolismo , Humanos , Insetos/metabolismo , Mamíferos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...